ChemCam Automated Target Selection Status

Becky Castano Ben Bornstein JPL

Outline

- Testing
 - Legacy
 - Bonneville
 - Selected Site Set

Validation Approach

- Accuracy assessment
 - Data
 - MER HazCam, NavCam and PanCam images
 - Location of rocks marked by hand
 - Prioritization
 - Size
 - Select sample of different albedo/colors
- Resource assessment
 - Determine run time under MER
 FSW environment

Tool for hand labeling

Blind Sampling vs Automatic Target Selection

- With 10% rock coverage
 - Random (blind) sampling
 - Expected only 1 out of 10 samples will be of a rock
 - ➤ On 50% of sols with blind sampling, not a single rock sample will be acquired, other days only 1 out of five samples expected to be of a rock
 - 80% target success rate
 - Expected 8 out of 10 samples will be of a rock
 - > Four out of five samples of rocks expected every sol with end-of-day sampling
 - > 8X increase in science return over blind sampling
 - > 33% increase in return for instrument on traverse sols on mission.
 - Average sol samples of rocks increases from 10.5 (10 targeted plus average 1 every other day untargeted) to 14 (10 targeted plus 4 end-ofday)

Target Selection Requirements

Target prioritization

- 1. Rock vs soil (rocks higher priority, ok to occasionally get soil)
 - Goal: 80% rocks
- 2. Larger rocks higher priority because they can be cored (small rocks ok occassionally)
 - − ~10cm
- 3. Would like some far away and one within the IDD radius such that it could be cored the following sol (IDD box –less than 1m)
- 4. Other features
 - Diversity of albedos
 - Rocks with layers

Identify Candidate Targets

- Locate Rocks
 - Edge-based rock finder
- Select Points on rock
 - Min Area (pixels)
 - Avg Area
 - Max Area
 - Min Perimeter (pixels)
 - Avg Perimeter
 - Max Perimeter

Technical Approach

- Usage Scenarios
 - Identify candidate targets
 - Locate rocks
 - Select points on rocks
 - Identify and prioritize candidate targets
 - Locate rocks
 - Select points on rocks
 - Extract rock properties
 - Prioritize points based on rock properties

Locate Rocks Algorithm

Legacy Results

- Legacy 65 images
- Target selection
 - Top 5 targets selected for each image
 - Criteria: max perimeter
- Results:
 - 92% of selected targets are rocks

Example Image

Selected targets are shown in blue

Legacy Target Selection Errors

9.8% misses (28 target selections out of 285)

Near miss: 7

Rover tracks: 16

Other miss: 1

Blue: Correct

Sand patch identifed as a rock: 1

Rover parts: 3

Legacy Images – No Rocks Detected

No rocks detected in 7 images
 Examples

Bonneville Panoramas

Pancam panorama

Navcam panorama

Bonneville Pancam images collected on sol 68, March 12, 2004

Bonneville Results Summary

Automated Target Selection Results

(up to 5 targets per image were selected)

- PanCam (77 images)
 - 379 targets identified
 - 322 correctly are rocks
 - 42 rover parts
 - 11 near misses
 - 4 disturbed soil
- NavCam (9 images)
 - 35 targets identified
 - 32 correctly are rocks
 - 2 rover parts
 - 1 near miss
- HazCam (3 images)
 - 6 targets identified
 - 4 correctly are rocks
 - 2 rover parts

Automated target selection accuracy (rock vs not rock)

	All targets identified	With rover hits removed
Pancam	85%	95%
Navcam	91%	97%

Science goal: 80% accuracy

Bonneville Site - Pancam

Five automatically selected targets for three Pancam images

Note that a distance from camera cutoff was not used

Bonneville Site - Navcam

Five automatically selected targets for a Navcam image

Bonneville Site - Navcam

Five automatically selected targets for a Navcam image

Bonneville Site - Hazcam

Further evaluation and testing on Hazcam data is necessary

Technical Approach

Locate Rocks Algorithm

Original image

For each ROI: Normalize and filter Edge sharpening, detection and tracing

Image Preprocessing

Combine blobs found in each ROI

Prune blobs unlikely to be rocks

List of rocks

Normalization of 3x3-ROIs image

Site 5

(Site 7,10,30 not shown)

Site 5, Pos 0, Sols 39-40 Map width = 32 m

Haz

Site 5, Pos 0, Sols 39-40 Map width = 26.6 m

Pan

Site 5, Pos 0, Sols 39-40 Map width = 18.8 m

Site 5

Haz and Nav images

Accomplishments

Accuracy

- Pancam: 90% of prioritized targets are rocks.
- Navcam: 70% of prioritized targets are rocks.

Prioritization

- Pancam: 73% of prioritized targets include largest rock in scene.
- Navcam: 77% of prioritized targets include largest rock in scene.

Speed

- Reduced pyramid to one level
- Use 256x256 image rather than full image
- 2.2 GHz Pentium laptops:

```
1x1 regions - 1.4 sec2x2 regions - 4.0 sec
```

- 3x3 regions 12.0 sec
 4x4 regions 16.0 sec
- We expect we can improve these numbers by a factor of 2.

Example Results

Site 5, Sol 39 Pan Image

5 targets selected. Top 3 are large rocks.

PDS ID: 2P129835188EFF0500P2396L2M1

Example Results

Site 5, Sol 39 Pan Image

4 targets selected. Near hit on fifth small rock.

PDS ID: 2P129839301EFF0500P2395L2M1

Example Results

Site 30, Sol 104 Pan Image

5 targets selected. All are large rocks.

PDS ID: 2P135596629EFF3000P2386L6M⁻